Generation of the weakest preconditions of programs with dynamic memory in symbolic execution
Annotation
Symbolic execution is a widely used method for the systematic study of program execution paths; it allows solving a number of important problems related to verification of correctness: searching for errors and vulnerabilities, automatic test generation, etc. The main idea of symbolic execution is generation and use of symbolic expressions in the program analysis in direct order, i.e., from the entry point to the points of interest. At the same time, since the time of E.W. Dijkstra, the method of backward symbolic execution has been popular when the conditions for hitting the point of interest are extended to the entry point of the program due to the iterative calculation of the weakest preconditions. This method is usually much more difficult to implement than direct symbolic execution, so even the artifacts of the latter cannot be used in the implementation. In this paper, the relationship between direct and backward symbolic execution based on the calculation of the weakest preconditions is investigated. In particular, it is shown that the latter can be implemented using the former. A formal presentation of symbolic execution with lazy initialization for programs with dynamic memory is given. An algorithm for calculating the weakest preconditions for arbitrary symbolic executed program branches is proposed. The lazy initialization mechanism and the algorithm for calculating the weakest preconditions are implemented in KLEE, a symbolic virtual machine for the well-known LLVM platform. The proposed method allows performing backward symbolic analysis using direct symbolic execution. This is important for the implementation of bidirectional program execution which can be used both for program verification and for automatic test generation.
Keywords
Постоянный URL
Articles in current issue
- Influence of the dimension, geometry, and orientation of nanostructures on the distribution of the electric field in matters of enhancing of Raman scattering
- Optical properties of planar plasmon active surfaces modified with gold nanostars
- Application of bioradiophotonics methods for the processing of bioelectric signals
- Automatic recognition of internal structures in translucent objects based on hologram-moire interferometry.
- Application of Neural Network and Computer Vision Technologies for Image Analysis of Skin Lesion
- Implementation of digital holographic interferometry for pulsed plasma studies
- Polychromic light source for the realization of multispectral processing method of skin malignant lesions images
- Application of additional high-frequency modulation to reduce influence of residual amplitude modulation LiNbO3 phase modulator on fiber optical gyroscope signal
- Optimization of the optical scheme of a photodetector module operating in the spectral range of 1.3–1.6 μm
- Residue feature analysis with empirical mode decomposition for mining spatial sequential patterns from serial remote sensing images.
- Adaptive nonlinear motion parameters estimation algorithm for digital twin of multi-link mechanism motion trajectory synthesis
- Investigation of spectral-luminescent properties of cesium CsPb(BrCl)3 quantum dots in fluorophosphate glasses
- Investigation of optical phenomena in multispectral matrix photodetector based on silicon
- The impact of yttrium aluminum garnet stoichiometry deviation on the conversion efficiency of tetravalent chromium ions
- Influence of low temperatures and thermal annealing on the optical properties of InGaPAs quantum dots
- Pressure control in material extrusion additive manufacturing
- An enforced non-negative matrix factorization based approach towards community detection in dynamic networks
- Visual display system of changes in physiological states for patients with chronic disorders and data transmission via optical wireless communication.
- Ice reconnaissance data processing under low quality source images
- Korsakov I.N., and othersPrediction of fatal outcome in patients with confirm COVID-19
- On the possibility of expanding the studied dynamic ranges in thermal anemometry
- The beating effect in uniaxial oriented polymer materials
- Numerical method for calculating the nozzle thrust of a wide-range rocket engine
- Numerical simulation of propulsive aerodynamic profiles